Applications of SAGBI-bases in dynamics

نویسنده

  • Karin Gatermann
چکیده

The classical reduction techniques of bifurcation theory, Liapunov–Schmidt reduction and centre manifold reduction, are investigated where symmetry is present. The symmetry is given by the action of a finite or continuous group. The symmetry is exploited systematically by using the algebraic structure of the module of equivariant polynomial tuples. We generalize the concept of SAGBI-bases to module-SAGBI basis and explain how to use this concept within the two reduction techniques. Examples illustrate the theoretical results. In particular the reduction onto centre manifold is performed for the Taylor–Couette problem with SO(2) × O(2)-symmetry. © 2003 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new algorithm for computing SAGBI bases up to an arbitrary degree

We present a new algorithm for computing a SAGBI basis up to an arbitrary degree for a subalgebra generated by a set of homogeneous polynomials. Our idea is based on linear algebra methods which cause a low level of complexity and computational cost. We then use it to solve the membership problem in subalgebras.

متن کامل

On the (De)homogenization of Sagbi Bases

In this paper we study the relation between nonhomogeneous and homogeneous Sagbi bases. As a consequence, we present a general principle of computing Sagbi bases of a subalgebra and its homogenized subalgebra, which is based on passing over to homogenized generators.

متن کامل

Optimal Lower Bound for Generators of Invariant Rings without Finite SAGBI Bases with Respect to Any Admissible Order

)( was investigated. It turned out that only invariant rings of direct products of symmetric groups have a finite SAGBI basis, which is then, in addition, multilinear. Of course, it would be of interest to have such a strong characterization with respect to any other admissible order [4, 6]. To achieve this seems to be all but trivial. One step towards the understanding of the behavior of SAGBI...

متن کامل

SAGBI Bases Under Composition

Our interest in the subject of this paper is inspired by Hong (1998), where Hoon Hong addresses the problem of the behavior of Gröbner bases under composition of polynomials. More precisely, let Θ be a set of polynomials, as many as the variables in our polynomial ring. The question then is under which conditions on these polynomials it is true that for an arbitrary Gröbner basis G (with respec...

متن کامل

Factor-SAGBI Bases: a Tool for Computations in Subalgebras of Factor Algebras

We introduce canonical bases for subalgebras of quotients of the commutative and non-commutative polynomial ring. A more complete exposition can be found in 4]. Canonical bases for subalgebras of the commutative polynomial ring were introduced by Kapur and Madlener (see 2]), and independently by Robbiano and Sweedler ((5]). Some notes on the non-commutative case can be found in 3]. Using the la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2003